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CHAPTER 1

1 There are many ways to do this. One possibility for A is

P =
⎡⎢⎢⎣

1 0 0
− 5

2
1 0

2 −1 1

⎤⎥⎥⎦ , Q =
⎡⎢⎢⎢⎣

1 − 3
2

−8 11
0 1 5 −7
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ , Δ =
⎡⎢⎢⎣

2 0 0 0
0 1

2
0 0

0 0 0 0

⎤⎥⎥⎦
Δ− =

⎡⎢⎢⎢⎣
1
2

0 0
0 2 0
0 0 0
0 0 0

⎤⎥⎥⎥⎦ , G = QΔ−P =
⎡⎢⎢⎢⎣

8 −3 0
−5 2 0
0 0 0
0 0 0

⎤⎥⎥⎥⎦
One possibility for B is

P =
⎡⎢⎢⎢⎣

1 0 0 0
−4 1 0 0
1 −2 1 0
1 1 −1 1

⎤⎥⎥⎥⎦ , Q =
⎡⎢⎢⎢⎣

1 −2 −3 −5
0 1 3 6
0 0 0 −2
0 0 1 1

⎤⎥⎥⎥⎦ , Δ =
⎡⎢⎢⎢⎣

1 0 0 0
0 −3 0 0
0 0 2 0
0 0 0 0

⎤⎥⎥⎥⎦
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Δ− =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 − 1

3
0 0

0 0 1
2

0
0 0 0 0

⎤⎥⎥⎥⎥⎦
, G = QΔ−P =

⎡⎢⎢⎢⎢⎢⎣

− 19
6

11
3

− 3
2

0
7
3

− 7
3

1 0

0 0 0 0
1
2

−1 1
2

0

⎤⎥⎥⎥⎥⎥⎦
2 There are as many generalized inverses to be found by this method as there are

non-singular minors of order the rank of the matrix.
One possibility for A is to use the 2 × 2 minor in the upper right-hand

corner. Its inverse is

[
8 −3
−5 2

]
. The resulting generalized inverse is G =

⎡⎢⎢⎢⎣
8 −3 0
−5 2 0
0 0 0
0 0 0

⎤⎥⎥⎥⎦.
One possibility for B is to use the minor M =

⎡⎢⎢⎣
1 2 3
4 5 6
7 8 10

⎤⎥⎥⎦. Its

inverse is

⎡⎢⎢⎢⎣
− 2

3
− 4

3
1

− 2
3

11
3

−2

1 −2 1

⎤⎥⎥⎥⎦. The resulting generalized inverse is G =

⎡⎢⎢⎢⎢⎢⎣

− 2
3

− 4
3

1 0

− 2
3

11
3

−2 0

1 −2 1 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

3 (a) The general solution takes the form x = Gy+(GA – I)z. Using the general-
ized inverse in of A 2, we have

x̃ =
⎡⎢⎢⎢⎣

8 −3 0
−5 2 0
0 0 0
0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
−1
−13
−11

⎤⎥⎥⎦
+
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

8 −3 0
−5 2 0
0 0 0
0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

2 3 1 −1
5 8 0 1
1 2 −2 3

⎤⎥⎥⎦ −
⎡⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠
⎡⎢⎢⎢⎣

z1
z2
z3
z4

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

31 + 8z3 − 11z4

−21 − 5z3 + 7z4

−z3

−z4

⎤⎥⎥⎥⎦
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(b) Using the generalized inverse of B in 1 we get in a similar manner

x̃ =
⎡⎢⎢⎢⎣
−8 − 5z4
11 − 6z4

2z4
−z4

⎤⎥⎥⎥⎦
4 We have that

A′A =
⎡⎢⎢⎣

6 1 11
1 11 −9

11 −9 31

⎤⎥⎥⎦
By the Cayley–Hamilton theorem,

390(A′A) − 48(A′A)2 + (A′A)3 = 0

Then

T = (−1∕390)(−48I + (A′A)) =
⎡⎢⎢⎢⎣

7
65

− 1
390

− 11
390

− 1
390

37
390

3
130

− 11
390

3
130

17
390

⎤⎥⎥⎥⎦
Then the Moore–Penrose inverse is

K = TA′ =
⎡⎢⎢⎢⎣

2
39

1
13

1
39

5
39

17
390

1
65

14
195

101
390

23
390

9
65

− 4
195

− 1
390

⎤⎥⎥⎥⎦
5 By direct computation, we see that only Penrose condition (ii) is satisfied.

6 (a) For M1,

G1 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0

0 − 3
2

5
2

0 1
2

− 1
2

0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

For M2,

G2 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0

0 − 1
2

3
2

0 0 0

0 1
10

− 1
10

⎤⎥⎥⎥⎥⎥⎦
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For M3,

G3 =

⎡⎢⎢⎢⎢⎢⎣

1
4

0 0

0 0 0

0 0 0

− 3
20

0 1
5

⎤⎥⎥⎥⎥⎥⎦
(b) A generalized inverse is

G =
⎡⎢⎢⎢⎣

0 0 0

0 11 −4

0 −4 3
2

⎤⎥⎥⎥⎦ .
There are infinitely many other correct answers.

7 (a) A′A =
[

2 −2
−2 2

]
, AA′ =

[
2 −2
−2 2

]
Non-zero eigenvalue = 4 for both matrices. Eigenvectors

⎡⎢⎢⎣
1√
2

− 1√
2

⎤⎥⎥⎦ ,
⎡⎢⎢⎣

1√
2

1√
2

⎤⎥⎥⎦Thus, U′ =
[
− 1√

2

1√
2

]
, S =

⎡⎢⎢⎣
1√
2

− 1√
2

⎤⎥⎥⎦ ,𝚲 =
[

4
]

A+ =
⎡⎢⎢⎣
− 1√

2

1√
2

⎤⎥⎥⎦
[

1
2

] [
1√
2

− 1√
2

]
=

[
− 1

4
1
4

1
4

− 1
4

]

Alternatively, by the Cayley–Hamilton Theorem

T = 1
4

I, K = TA′ =

[
− 1

4
1
4

1
4

− 1
4

]
.

(b) By direct matrix multiplication, we find that (i) satisfies conditions (i) and
(ii) so it is a reflexive generalized inverse, (ii) satisfies conditions (i) and (iv)
so it is a least square generalized inverse, (iii) satisfies conditions (i) and (iii)
so it is a minimum norm geneeralized inverse and (iv) satisfies conditions
(i), (iii), and (iv) so it is both a least-square and minimum norm generalized
inverse but not reflexive.

8 There are a number of right answers to part (a) and (b) depending on the choice
of generalized inverse.
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(a) We have that

XX′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 2 1 1 1

2 2 2 1 1 1

2 2 2 1 1 1

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (XX′)− =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 2
3

− 1
3

0 0

0 0 − 1
3

2
3

0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Xmn = X′(XX′)− =

⎡⎢⎢⎢⎢⎣
0 0 1

3
1
3

0 0

0 0 2
3

− 1
3

0 0

0 0 − 1
3

2
3

0 0

⎤⎥⎥⎥⎥⎦
.

(b) We have that X′X =
⎡⎢⎢⎣

6 3 3
3 3 0
3 0 3

⎤⎥⎥⎦ , (X′X)− =
⎡⎢⎢⎢⎣

0 0 0

0 1
3

0

0 0 1
3

⎤⎥⎥⎥⎦ and Xls =

(X′X)−X′ =
⎡⎢⎢⎢⎣

0 0 0 0 0 0
1
3

1
3

1
3

0 0 0

0 0 0 1
3

1
3

1
3

⎤⎥⎥⎥⎦ .
(c) Both the minimum norm and least-square inverses are reflexive. We have

X+ = XmnXXls =

⎡⎢⎢⎢⎢⎣
1
9

1
9

1
9

1
9

1
9

1
9

2
9

2
9

2
9

− 1
9

− 1
9

− 1
9

− 1
9

− 1
9

− 1
9

2
9

2
9

2
9

⎤⎥⎥⎥⎥⎦
9 (a) Let G be a generalized inverse of A. A generalized inverse of PAQ is

Q−1GP−1.
Indeed, PAQQ−1GP−1PAQ = PAGAQ = PAQ.

(b) The generalized inverse is GA because GAGA = GA.
(c) If G is a generalized inverse of A then (1/k)G is a generalized inverse of kA.

We have that kA(1/k)GkA = AGA = A.
(d) The generalized inverse is ABA because (ABA)(ABA)(ABA) =

(ABA)2(ABA) = (ABA)(ABA) = ABA.

(e) If J is n × n then 1
n2 J is a generalized inverse of J.

J
1
n2

JJ = J
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10 (a) The identity and zero matrix and idempotent matrices. Also three by three
matrices that satisfy the characteristic equation A3 – A = 0.

(b) Orthogonal matrices AA′A = A because A′A = I.

(c) The identity matrix, the zero matrix, and an idempotent matrix.

(d) No matrices.

(e) Non-singular matrices

11 Searle’s definition means that for equations Ax = y for a vector t, t′A = 0
implies t′y = 0. For (a) t′0 = 0 for any vector t. For (b) if t′X′X = 0, implies
t′U𝚲1∕2SS′𝚲1∕2U′ = 0. Multiply this by U𝚲−1∕2S to get t′U𝚲1∕2S = t′X′ = 0.

12 By substitution, we have

x̃ = Gy + (GA − I)((G − F)y + (I − FA)w)

= [G + (GA − I)(G − F)]Ax + (GA − I)(I − FA)w

= [GA + GAGA − GA − GAFA + FA]x + (GA − I − GAFA + FA)w

= [GA + GA − GA − GA + FA]x + (GA − I − GA + FA)w

= FAx + (FA − I)w

= Fy + (FA − I)w.

13 The matrix (I − GA) is idempotent so it is its own generalized inverse. The
requested solution is

w = (I − GA)(G − F)y + (I − GA)(FA − I)z

= (GA − FA − GAGA + GAFA)x + (FA − GAFA − I + GA)z

= (GA − FA − GA + GA)x + (FA − GA − I + GA)z

= (G − F)Ax + (FA − I)z

= (G − F)y + (FA − I)z.

14 (a) Since A has full-column rank, so does A′A(see, for example, Gruber (2014)
Theorem 6.4). Also A′A has full-row rank so it is non-singular. As a result,
since AGA = A, A′AGA = A′A and GA = I. Then GAG = G and GA is a
symmetric matrix.

(b) Since A has full-row rank, A′ has full-column rank. Then G′ is a left inverse
of A′ and G′A′ = I, so AG = I and G is a right inverse. Then GAG = G
and AG is a symmetric matrix.

15 Suppose that the singular value decomposition of A = S′𝚲1∕2U′. Then A′A =
U𝚲U′, (A′A)p = (U𝚲U′)(U𝚲U′)L(U𝚲U′) = U𝚲pU′. Then since T(A′A)r+1 =
(A′A)r, TU𝚲r+1U′ = U𝚲rU′. Post-multiply both sides of this equation by
U𝚲−rU′ to obtain TU𝚲U′ = UU′. Now post-multiply both sides by U𝚲−1∕2S
so that TU𝚲U′U𝚲1∕2S = UU′U𝚲1∕2S = U𝚲1∕2S and thus TA′AA′ = A′.

16 Any singular idempotent matrix would have the identity matrix for a generalized

inverse. For example, M =
[

1 0
0 0

]

http://www.book4me.xyz/solution-manual-linear-models-searle-gruber/
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17 Assume that B−A− is a generalized inverse of AB. Then

ABB−A−AB = AB

Pre-multiply the above equation by A− and post-multiply it by B−. Then

A−ABB−A−ABB− = A−ABB−

so that A−ABB− is idempotent.
Now suppose that A−ABB− is idempotent. Then

A−ABB−A−ABB− = A−ABB−

Pre-multiply this equation by A and post-multiply it by B to obtain

AA−ABB−A−ABB−B = AA−ABB−B.

By virtue of AA−A = A and BB−B = B, we get

ABB−A−AB = AB

so that B−A− is a generalized inverse of AB.

18 See Exercise 15 for an example where a matrix and its generalized inverse are
not of the same rank.

First assume that G is a reflexive generalized inverse of A. From AGA =
A rank(A) ≤ rank (G). Likewise from GAG = G rank (G) ≤ rank (A) so that
rank(G) = rank(A).

On the other hand suppose that G is a generalized inverse of A with the same
rank r as A. We can find non-singular matrices P and Q where

PAQ =
[

Ir 0
0 0

]
and as a result, A = P−1

[
Ir 0
0 0

]
Q−1

A generalized inverse takes the form

G = Q
⎡⎢⎢⎣

Ir C12
C21 C22

⎤⎥⎥⎦P

Because G has rank r and the first r columns are linearly independent, C22 =
C12C21. The verification that G is a reflexive generalized inverse follows by
straightforward matrix multiplication.



JWBS185-SolutionsManual JWBS185-Searle July 29, 2016 19:58 Printer Name: Trim: 6.125in × 9.25in

8 SOLUTIONS MANUAL

19 We have that

AGA = P−1

[
D 0

0 0

]
Q−1Q

[
D−1 X

Y Z

]
PP−1

[
D 0

0 0

]
Q−1

= P−1

[
D 0

0 0

][
D−1 X

Y Z

][
D 0

0 0

]
Q−1

= P−1

[
I DX

0 0

][
D 0

0 0

]
Q−1 = P−1

[
D 0

0 0

]
Q−1 = A.

Thus, A is a generalized inverse of G. Also

GAG = Q

[
D−1 X

Y Z

]
PP−1

[
D 0

0 0

]
Q−1Q

[
D−1 X

Y Z

]
P

= Q

[
D−1 X

Y Z

][
D 0

0 0

][
D−1 X

Y Z

]
P

= Q

[
I 0

YD 0

][
D−1 X

Y Z

]
P

= Q

[
D−1 X

Y YDX

]
P = G

if YDX = Z.
In Exercise 1, a generalized inverse for B could be

G = Q

⎡⎢⎢⎢⎢⎢⎣

1 0 0 1

0 − 1
3

0 2

0 0 1
2

3

1 2 3 4

⎤⎥⎥⎥⎥⎥⎦
P =

⎡⎢⎢⎢⎢⎢⎣

− 91
6

− 25
3

31
2

−32
31
3

17
3

−13 32

0 0 2 −8
7
2

2 − 7
2

7

⎤⎥⎥⎥⎥⎥⎦
This matrix is non-singular. However, B is a 4 × 4 matrix of rank 3.

20 (a) A generalized inverse of AB would be B′G. Notice that

ABB′GAB = AIGAB = AGABB = AB.

(b) Let G be a generalized inverse of L. Then a generalized inverse of LA would
be A−1G. Observe that

LAA−1GLA = LGLA = LA.

21 The matrix itself.
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22 (a) Let H be a generalized inverse different from G. We must find an Z so that

H = G + Z − GAZAG. Let Z = H − G + GAG. Then

G + H − G + GAG − GA(H − G + GAG)AG

= H + GAG − GAHAG + GAGAG − GAGAGAG

= H + GAG − GAG + GAG − GAG = H.

(b) If we can generate all generalized inverses, we generate all solutions.

23 (a) We have that

[
U V

] [𝚲−1∕2 C1
C2 C3

] [
S
T

] [
S′ T′ ] [𝚲1∕2 0

0 0

] [
U′

V′

] [
U V

] [𝚲−1∕2 C1
C2 C3

] [
S
T

]
=
[

U V
] [𝚲−1∕2 C1

C2 C3

] [
𝚲1∕2 0

0 0

] [
𝚲−1∕2 C1

C2 C3

] [
S
T

]
=
[

U V
] [ I 0

C2𝚲1∕2 0

] [
𝚲−1∕2 C1

C2 C3

] [
S
T

]
=
[

U V
] [𝚲−1∕2 C1

C2 C2𝚲1∕2C1

]
if and only if C3 = C2𝚲1∕2C1.

(b) Observe that

X =
[

S′ T′ ] [𝚲1∕2 0
0 0

] [
U′

V′

]
and G =

[
U V

] [𝚲−1∕2 C1
C2 C3

] [
S
T

]
.

Then

GX =
[

U V
] [𝚲−1∕2 C1

C2 C3

] [
S
T

] [
S′ T′ ] [𝚲1∕2 0

0 0

] [
U′

V′

]
=
[

U V
] [ I 0

C2𝚲1∕2 0

] [
U′

V′

]
is symmetric if and only if C2 = 0.

(c) Observe that

XG =
[

S′ T′ ] [𝚲1∕2 0
0 0

] [
U′

V′

] [
U V

] [𝚲−1∕2 C1
C2 C3

] [
S
T

]
=
[

S′ T′ ] [ I 𝚲1∕2C1
0 0

] [
S
T

]
is symmetric if and only if C1 = 0.

http://www.book4me.xyz/solution-manual-linear-models-searle-gruber/
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24 For M, we have

XMX = X(X′X)+X′X = X by Theorem 10

MXM = (X′X)+X′X(X′X)+X′ = (X′X)+X′

XM = X(X′X)+X′, a symmetric matrix by Theorem 10

MX = (X′X)+X′X, a symmetric matrix by Penrose axiom applied to X′X

Using the singular value decomposition recall that if X = S′𝚲1∕2U′, X+ =
U𝚲−1∕2S. Then

M = (X′X)+X′ = U𝚲−1U′U𝚲1∕2S = U𝚲−1∕2S.

For W, we have

XWX = XX′(XX′)+X = X applying Theorem 10 to X′,

WXW = X′(XX′)+XX′(XX′)+ = X′(XX′)+, by the reflexivity of (XX′)+,

XW = XX′(XX′)+ applying the Penrose condition to XX′,

WX = X′(XX′)+X by Theorem 10.

Using the singular value decomposition W = X′(XX′)+ = U𝚲1∕2SS′𝚲−1S =
U𝚲−1∕2S = X+.

25 By direct verification of Penrose conditions

UNU′UN−1U′UNU′ = UNN−1NU′ = UNU′,
UN−1U′UNU′UN−1U′ = UN−1NN−1U′ = UN−1U′,
UN−1U′UNU′ = UU′, a symmetric matrix, and
UNU′UN−1U′ = UU′, a symmetric matrix.

26 Again by direct verification of the Penrose axioms

PAP′PA+P′PAP′ = PAA+AP′ = PAP′,
PA+P′PAP′PA+P′ = PA+AA+P′ = PA+P′,
PAP′PA+P(PA+P′PAP′)′ = (PA+AP′)′ = P(A+A)′P′ = PA+AP′

and similarly

(PAP′PA+P′)′ = P(AA+)′P′ = PAA+P′.

27 (a) Using the singular value decomposition of X

X+(X+)′ = U𝚲−1∕2S(U𝚲−1∕2S)′ = U𝚲−1∕2SS′𝚲−1∕2U′ = U𝚲−1U′ = (X′X)+.

(b) Again using the singular value decomposition of X

(X′)+X+ = S′𝚲−1∕2U′U𝚲−1∕2S = S′𝚲−1S = (XX′)+.

http://www.book4me.xyz/solution-manual-linear-models-searle-gruber/




